T2-03

Micro Diaphragm Pumps (air/gas)

Up to 2.5 LPM Free Flow

T2-03 micro diaphragm pump series is ideal for higher performance, fixed and portable air and gas detection, and medical applications requiring flow up to 2.5 lpm. T2-03 pumps are proven in fixed and portable applications for sampling of hazardous gases and vapors typical of industrial and mining operations.

Features

- The valve design has been optimized to provide the highest flow rates available with the lowest power draw in this package size. Lower power results in longer battery life and smaller instrument size.
- The wear components of these pumps have been designed to provide maximum life. Many applications for these pumps require 10,000+ hours of operation.
- The pumps fit into the extremely tight spaces demanded of today's handheld instruments, such as portable gas detectors and portable instruments such as handheld gas detectors and medical devices. The lightweight design minimizes instrument weight.
- RoHS compliant.

Applications

- Gas Sampling
- Fixed Gas Detectors
- Medical Instruments
- Aerosols and Particle Analysis
- Combustion Analyzers

Product Specifications*

Physical Properties

Operating Environment¹:

32 to 122°F (0 to 50°C)

Storage Environment:

14 to 122°F (-10 to 50°C)

Humidity:

5-95% Relative Humidity

Noise Level2:

As low as 45dB

Pump Assembly Rated Life³:

eCompact - 5,000 hrs Compact - 10,000 hrs HP - 10,000 hrs

Pressure and speed dependent.

Weight:

1.2 oz. (33 g) eCompact 1.2 oz. (33 g) Compact 1.5 oz. (42 g) HP

Wetted Materials

Diaphragm:

Neoprene, EPDM, FKM

Valves:

Silicone, FKM

Pump Head:

ABS, PPS

Electrical

Motor Type:

PMDC Iron Core Brush, Coreless Brush

Nominal Motor Voltages4:

4, 5.6, 8.3, 12.4 VDC

Max Power at Nominal Voltage:

eCompact - PMDC Iron Core Brush 2.4 Watts (298 mA @ 8VDC)

Compact - Coreless Brush Motor 2.3 Watts (386 mA @ 6 VDC)

HP - Coreless Brush Motor 0.7 Watts (88 mA @ 8 VDC)

Electrical Termination:

PMDC Iron Core Brush - Solder Tabs Coreless Brush - 5.7 in (145 mm) Wire Leads

Current Range5:

18 - 411 mA

Inductance6:

eCompact:

18.64 mH max@1kHz/50mV Compact:

0.47 mH max@1kHz/50mV HP.

3.4 mH max@1kHz/50mV

Pneumatic

Head Configuration:

Single

Maximum Flow:

2 5 I PM

Maximum Intermittent Pressure⁷:

12 psi (832 mbar)

Maximum Continuous Pressure:

2 psi (138 bar) - eCompact PMDC Iron Core Brush, Compact Coreless Brush Motor 8 psi (555 mbar) - HP Coreless Brush Motor

Maximum Intermittent Vacuum⁷:

20.8 in Hg (527 mm Hg)

Maximum Continuous Vacuum:

eCompact PMDC Iron Core Brush 4 psi (102 mbar)

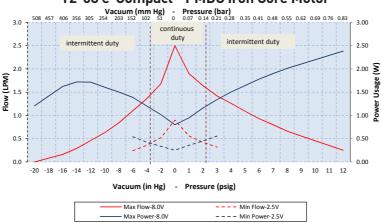
Compact Coreless Brush Motor 4 psi (102 mbar)

HP Coreless Brush Motor 12 psi (305 mbar)

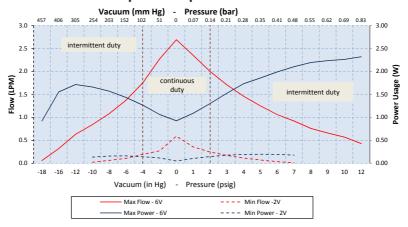
Filtration:

40 micron recommended

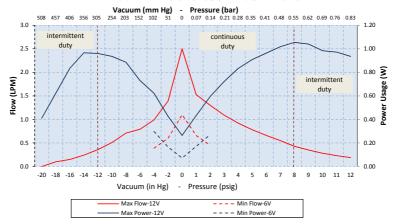
Efficiency at Free Flow8:


eCompact PMDC Iron Core Brush Motor: 3.56 LPM/Watt (P/N: T3EP-1ST-05-3FFP) Compact Coreless Brush Motor: 11.92 LPM/Watt (P/N: T3CP-1HE-04-2SEB) HP Coreless Brush Motor: 15.28 LPM/ Watt (P/N: T3HP-1PD-12-1SNP)

* See Appendix A for details.



Performance Specifications


T2-03 e-Compact - PMDC Iron Core Motor

T2-03 Compact Pump - Coreless Brush Motor

T2-03 HP - Coreless Brush Motor

The above graphs represent examples of performance for the pumps series handling air at 800 feet (244M) above sea level at 75° F $(24^{\circ} C)$. Performance will vary depending on barometric pressure and media temperature. Curves are representative of standard pump configurations. Pump configurations could be customized for higher or lower flows, depending on specific customer requirements.

Please contact Parker Precision Fluidics Applications Engineering for other considerations.

Sizing and Selection

T2-03 Series PMDC Iron Core Brush Motor (eCompact)

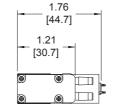
Coreless Brush Motor (Compact)

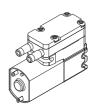
Coreless Brush Motor (HP)

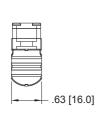
	eCompact	Compact	HP
Inductance ⁶	Good	Best	Better
Efficiency at Free Flow ⁸	Good	Better	Best
Life ³	Good - 5,000 hours	Best - 10,000 hours	Best - 10,000 hours
Size/Weight	Better	Best	Good
Cost	Best	Better	Good

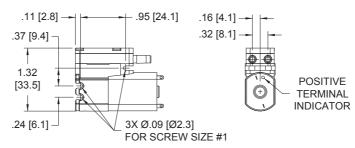
Mounting Guidelines:

- For eCompact, Parker recommends mounting with (2) #1 screw or using a nylon cable tie with a length of at least 4" (100 mm)
- For Compact & HP, Parker recommends using a nylon cable tie with a length of at least 4" (100 mm)

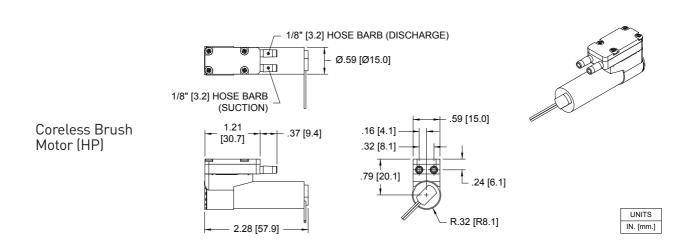

Port Connections:


- Barbs are sized for 1/8" ID tubing, 70-80 durometer recommended.
- Flow direction is marked on the pump head with arrows.


Mechanical Integration


Dimensions

PMDC Iron Core Brush Motor (eCompact)



UNITS IN. [mm.]

Dimensions

1/8" [3.2] HOSE BARB (DISCHARGE) Coreless Brush Motor 1/8" [3.2] HOSE BARB (SUCTION) (Compact) - .59 [15.0] 1.21 [30.7] .16 [4.1] .37 [9.4] .32 [8.1] .79 [20.1] .24 [6.1] R.31 [R7.9] UNITS - 1.64 [41.7] -IN. [mm.]

Electrical Integration and Motor Control

If application requires variable flow, motor control options are available, as follows:

PMDC Iron Core Brush Motor (eCompact)

2 Solder Tabs Positive terminal marked on pump motor

Coreless Brush Motor (Compact & HP)

2 Wire	Red (+), Black (-)
Wire specification	28 AWG Wire lead length 5.7" (145 mm)

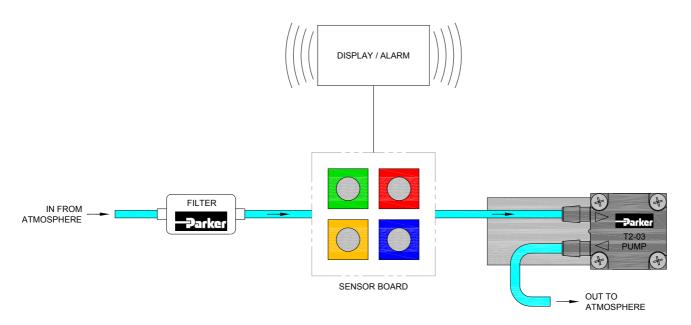
Electrical Integration and Motor Control cont'd

Key Things to Remember

5" (127 mm) flying Leads are the standard electrical connection method to the pump (eCompact standard connection is tabs). Contact Applications for other connection requirements.

The pump lead wires are non-polarized.

The pump can be controlled by DC voltage or PWM. The minimum recommended PWM frequency is 20kHz.


The pump flow and pressure can be controlled by adjusting the input voltage from zero to maximum rated voltage.

The pump is not a pressure holding device. An external check valve is recommended, if there is a pressure holding requirement.

Pump orientation does not affect performance or life.

Typical Flow Diagram

Hand Held Gas Detection

Chemical Compatibility Chart*

	Chemical Compatibility of Wetted Path Materials												
Chemical	FKM	EPDM	ABS	Neoprene Rubber(CR)	PPS	Silicone							
Air	1	1	1	1	1	1							
Ozone (1000 ppm)	4	4	2	3	1	1							
Oxygen	1	1	1	1	1	2							
Ethylene (Ethene)	1	4	-	1	1	4							
Acetylene	1	1	2	2	1	3							
Propane	1	4	2	1	1	4							
Methane	1	4	4	2	1	4							
Nitrogen	1	1	1	1	1	1							
Carbon Dioxide	1	2	2	1	1	2							
Halothane (Up to 5%)	1	4	1	4	1	4							

^{*}The above is an Abbreviated Chemical Compatibility Chart. Please consult factory for details.

Compatibility Legend

- 1. EXCELLENT Minimal or no effect
- 2. GOOD

 Possible swelling and/or loss of physical properties
- 3. DOUBTFUL
 Moderate or severe swelling and loss of physical
 properties
- 4. NOT RECOMMENDED

 Severe effect and should

 not be considered

Note: Consult factory for other gases.

Ordering Information

T2-03 Micro Pumps

						Enna											
Configuration				uum: Load		Free Flow			Pressure PM @ Lo			M	ax			PCD1	Wetted Materials ²
	18 in Hg 457 mm Hg	16 in Hg 406 mm Hg	12 in Hg 305 mm Hg	8 in Hg 203 mm Hg	4 in Hg 102 mm Hg	0	2 psig 134 mbar	4 psig 276 mbar	6 psig 414 mbar	8 psig 552 mbar	10 psig 689 mbar	Vac in Hg	Press psig	Motor Type	VDC	mA	Diaphragm, Valves, Gasket
T3CP-1HE-04-1SNB				0.3	0.9	2.5	1.1	0.5				8.6	4.5	Coreless Brush	4	313	CR, VMQ, CR
T3CP-1HE-04-2SEB				0.1	0.3	1.1	0.5	0.2				10.4	5.5	Coreless Brush	4	103	EPDM, VMQ, CR
T3CP-1HE-06-1SNB				0.6	1.2	2.8	1.5	0.8	0.5			12.2	6.5	Coreless Brush	6	317	CR, VMQ, CR
T3EP-1ST-05-3FFP			0.3	0.6	0.8	1.5	1.2	0.7	0.6	0.4		16.7	11.7	PMDC Brush	5.6	411	FKM
T3EP-1ST-08-1SNB		0.2	0.6	0.7	1.3	2.5	1.6	1.2	0.7	0.6		20.8	10.5	PMDC Brush	8.3	385	CR, VMQ, CR
T3HP-1PD-12-1SNP		0.2	0.4	0.7	1.0	2.5	1.3	0.9	0.7	0.4	0.3	18.0	12	Coreless Brush	12.4	97	CR, VMQ, CR

1. PCD: Peak Current Draw 2. CR: Neoprene, VMQ: Silicone, FKM: Fluorocarbon, EPDM: Ethylene Propylene Diene Monomer

Please click on the Order On-line button below (or go to www.parker.com/precisionfluidics/t3) to configure your T2-03 Micro Diaphragm Pump.

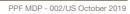
Serviceable – PPF products are designed for use through the rated life and Parker does not sell replacement parts, nor is it recommended to service these in the field

Note: In addition to Parker's innovative and flexible pump designs, we offer applications engineering expertise to our customers in order to configure and recommend the optimal pump for the application. Contact Parker Applications Engineering to discuss and configure alternate pump configurations to meet your specific application requirements. Providing information on the following requirements will assist us in developing an optimal solution for your application:

- Noise
- Operating Pressure / Vacuum
- Power Consumption
- Life Requirement
- Size
- Motor Control
- Media
- Voltage

Parker Hannifin Precision Fluidics Division reserves the right to make changes. Drawings are for reference only.

T2-03


Micro Diaphragm Pumps (air/gas)

Appendix A

All performance data is typical based on standard conditions: 70°F and 14.7 psia (21°C and 1 bar).

- 1. Duty Dependent. For operation above 122°F (50°C) consult factory
- 2. Noise is dependent on the configuration and operation of the pump in the application. Parker has the ability to tailor the pump configuration when noise is a critical criterion in the effort to meet the performance requirements of the application. Noise level is tested to Parker protocol P-105.
- 3. Life rating can vary depending on application and operating conditions.
- 4. Custom motor options available. Custom motors may require a significant application potential. The standard motors can be configured with a special winding to meet a particular operation point at a specified voltage
- 5. Current range is dependent on motor type, voltage, pressure/vacuum and flow requirement. Lower levels possible depending on application.
- 6. Inductance can be used to measure the viability of a component in a device requiring intrinsic safety.
- 7. Maximum intermittent pressure/vacuum data is a pump capability guideline for applications that go beyond the maximum continuous levels for short periods of time. Please consult customer specific requirements with the factory or Applications Engineering.
- 8. Pump efficiency is a measure of the flow rate generated per unit of power consumed. Efficiency may change dependent on application and operating condition at free flow.

© 2019 Parker Hannifin Corporation

Parker Hannifin Corporation

Precision Fluidics Division

26 Clinton Dr., Unit 103

Hollis, NH 03049

phone: +1 603 595 1500

email: ppfinfo@parker.com

www.parker.com/precisionfluidics