

🛃 BENEFITS

- Cycling 3.3V_{DC} logic output allows direct monitoring of the O₂ sensor pump cycle for diagnostic purposes
- No reference gas required

NOTES

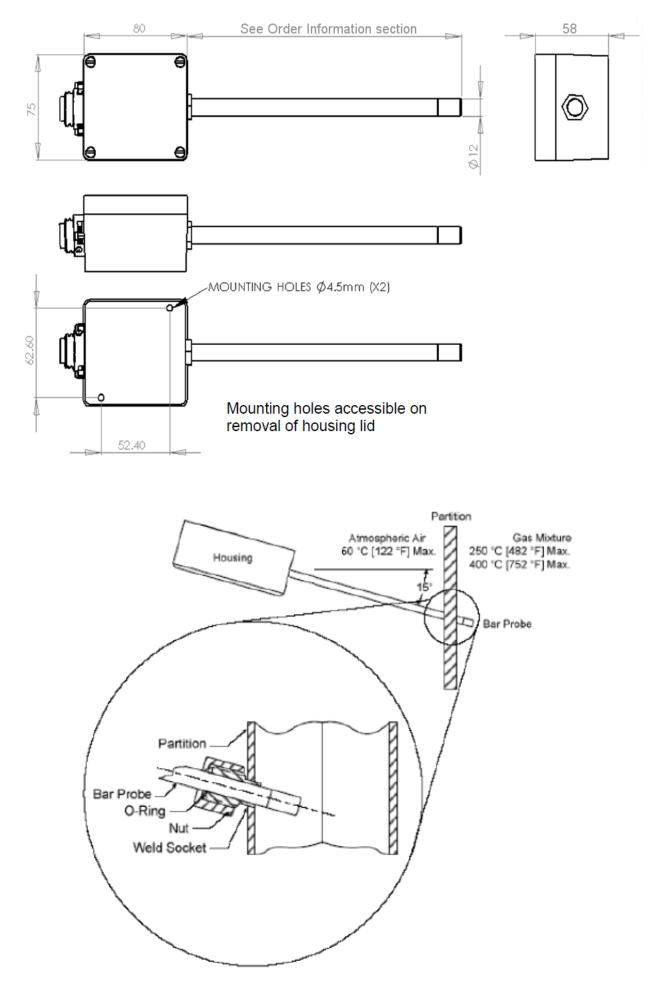
X TECHNICAL SPECIFICATIONS

Supply voltage		24V _{DC} ± 10%	
Supply current		500mA max. at 24V _{DC}	
Digital output		RS232	
Analogue output		4—20mA; load 600Ω max.	
	or	0 —10V _{DC} ; load 10k Ω min.	
Housing temperature limits			
	Storage:	-10°C to +85°C	
	Operating:	-10°C to +85°C	
Permissible gas t	emperatures	(probe tip)	
	Standard:	-100°C to +250°C	
	High:	-100°C to +400°C	
Gas flow rate		0 to 10 m/s	
Permissible acce			
	Repetitive	5g	
	Incidental	30g	
		1) Prolonged operation below 0.1% O ₂	

OUTPUT VALUES

Oxygen range (analogue output) ²		0.1 ¹ —25% O ₂
	or	0.1 ¹ —100% O ₂
Oxygen range (RS232 output)		0.1 ¹ and 100% O ₂
Accuracy after calibration ^{3, 4}		1% O ₂
Repeatability after calibration ³		0.5% O ₂
Output resolution		
Analogue 4—20mA		0.01mA
Analogue 0—10V _{DC}		0.01V
Digital RS232		0.01% O ₂
Response time		< 15s
Warm up time (prior to sensor open	ration)	60s
Output stabilisation time		~ 180s

Need help? Ask the expert Tel: + 44 (0)1236 459 020 and ask for "Technical"

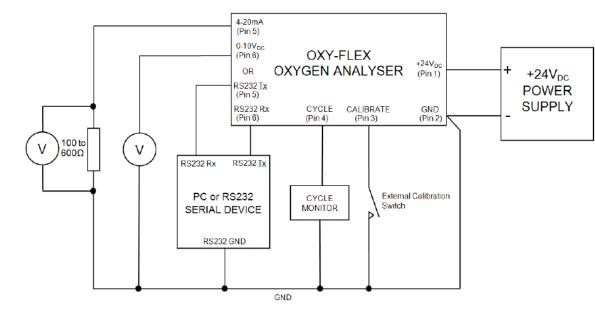


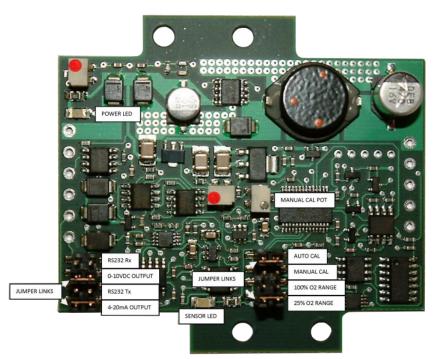
Prolonged operation below 0.1% O_2 can damage the sensing element. Range selectable by altering the position of the jumper links on the PCB; refer to PCB Layout on page 3. 2) 3) 4)

Assuming barometric pressure (BP) remains constant. As the O_2 sensor measures the partial pressure of oxygen (PPO₂) within the measurement gas deviations in the BP from That here O_2 sensor measures the partial presence of O_2 year (1 + O_2) within the measurement gas densities the partial present of O_2 at 1013.25mbar and the BP increases by 1%, the sensor readout will also increase by 1% to 21.21% O₂.


Utline drawing and mounting information

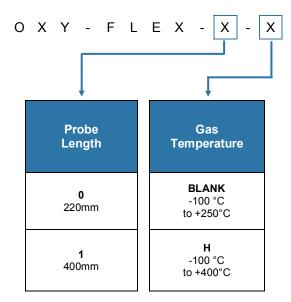
All dimensions shown in mm. Tolerances = ± 1 mm.


Housing: Amphenol Ecomate C016 30C006 100 12 Mating Connector: Binder 99-4218-00-07 **NOTE:** Mating connector also supplied.


Pin	Assignment	
1	24V _{DC} ±10%	
2	GND	
3	Calibrate	
4	Cycle	
5	4—20mA / RS232 Tx (see Note)	
6	0—10V _{DC} / RS232 Rx (see Note)	
CENTRE	Housing / Probe Earth	

NOTE: Output pins 5 and 6 are both referenced to the supply GND (pin 2). Due to high current flow in the supply GND, when monitoring the $0-10V_{DC}$ output (pin 6) it is recommended that a separate GND wire for the measurement system is taken from pin 2. This removes errors due to voltage drops in the power supply connections.

Assignment of output pins 5 and 6 selectable by altering the position of the jumper links on the PCB; see PCB LAYOUT below.



CIRCUIT DIAGRAM AND PCB LAYOUT

Generate your specific part number using the convention shown below. Use only those letters and numbers that correspond to the options you require — omit those you do not. Include the "OXY-FLEX" prefix.

Do not exceed maximum ratings and ensure sensor(s) are operated in accordance with their requirements.

Carefully follow all wiring instructions. Incorrect wiring can cause permanent damage to the device.

Zirconium dioxide sensors are damaged by the presence of silicone. Vapours (organic silicone compounds) from RTV rubbers and sealants are known to poison oxygen sensors and MUST be avoided. Do NOT use chemical cleaning agents.

Failure to comply with these instructions may result in product damage.

As customer applications are outside of SST Sensing Ltd.'s control, the information provided is given without legal responsibility. Customers should test under their own conditions to ensure that the equipment is suitable for their intended application.

For technical assistance or advice, please email: technical@sstsensing.com

General Note: SST Sensing Ltd. reserves the right to make changes to product specifications without notice or liability. All information is subject to SST Sensing Ltd.'s own data and considered accurate at time of going to print.

© 2017 SST SENSING LTD.

